Hand-laid Hot-mix Asphalt:

Best Practice Guide for

Driveways
Parking Areas
Tennis Courts
Sidewalks
Patching and repairs

Published by
Much Asphalt, Ryneveld Street, P.O. Box 49 Eerste Rivier 7103
April 2002
Third Edition April 2009
This *Best Practice Guide* has been sponsored and produced by Much Asphalt in the interests of establishing a uniform, industry-wide standard for high quality hand-laid hot mix asphalt.

It has been designed to ensure that supervisors and foremen working with established contractors, as well as newly established and emerging contractors, have access to state-of-the-art knowledge of those products and processes which have been proven in practice to produce durable, cost effective asphalt surfaces with a high standard of finish.

Drawing on the technological know-how and extensive experience of leaders in the field of hand-laid hot-mix asphalt, this guideline may also be read by clients and customers to ensure that they know what specification is being worked to, and what may expected from the finished product in terms of appearance, performance and cost.

The valuable assistance of the following people and organisations is gratefully acknowledged:

Andre Hauptfleisch Pro Asphalt
Brett Swanepoel Pride Paving
Brian Petersen Tarmix Asphalt
Bonzo Rutherford Tartan Asphalting
Kobus Louw Colas SA (Pty) Ltd.
Malcolm Knipe Afrisam

The information contained in the following Southern African Bitumen Association (Sabita) technical publications was invaluable in the compilation of this guideline, and is gratefully acknowledged:

Manual 5 *Guidelines for the Manufacture and Construction of Hot-Mix Asphalt*

Manual 12 *Methods and Procedures: Labour enhanced construction for bituminous surfacings*

The Australian Asphalt Pavement Association (AAPA)
Contents

1. Contract preparation 4
 1.1 Estimating and pricing 4
2. Site preparation 7
 2.1 Establish and mark out work area 7
 2.2 Remove existing vegetation 7
 2.3 Excavate subgrade to required depth 7
3. Edging 9
 3.1 Marking out and preparation 9
4. Base 10
 4.1 Preparation of subgrade 10
 4.2 Spreading and compaction of base 11
 4.3 Final preparation and inspection 12
5. Primer and tack coats 13
 5.1 Selection of primer or tack coat 13
 5.2 Application rates 14
 5.3 Applying primer and tack coats 15
6. Hot-mix asphalt 17
 6.1 Selection 17
 6.2 Scheduling and acceptance 18
 6.3 Application of hot-mix asphalt 19
 Hand laid hot mix asphalt in pictures 24
7. Patching and repairs 27
 7.1 Crocodile cracks 27
 7.2 Random cracks 27
 7.3 Potholes 28
 7.4 Pavement failure 28
 7.5 Surface repair 29
 7.6 Pothole repair 29
 7.7 Patching and repairs 30
8. Quality control 34
 8.1 Final inspection 34
9. Ordering hot-mix asphalt 35
 9.1 Much Asphalt branches 35
 9.2 Procedures for ordering hot-mix asphalt 36

Much Asphalt Order Form and price/Tender Details form attached at end of booklet.
1.1 Estimating and pricing

A vital element of successful contracts — i.e. those in which the client receives a high-quality, cost effective product from a contractor who makes a reasonable, market-related profit — is accurate assessment of material quantities and production capacity by the contractor.

Because contractors may have wide variations in production capacity, this guideline will focus exclusively on the calculation of material quantities and their ordering procedures.

(a) Base material:

Material type and cost should be discussed with supplier before quoting. Recommended base material grade and application thicknesses are listed in Table 3, Page 8.

Quantity:

Determination of the required quantity of base material in cubic metres is a straightforward calculation involving the multiplication of length, breadth and thickness, making allowance for compaction. Note however that material should be ordered according to the following rough guideline:

\[
\text{loose thickness} = \text{compacted thickness} + 33\%
\]

Example:

For a driveway 25 m long and 6 m wide, requiring a base of 150 mm compacted thickness, calculate required quantity \(Q\) as follows:

\[
Q = 25 \times 6 \times (0.150 + 33\%)
\]
\[
= 150 \times (0.150 + 0.050)
\]
\[
= 150 \times 0.200
\]
\[
= 30 \text{ m}^3 \text{ (loose)}
\]
(b) **Primer/tack coat**

Primer/tack coat should be applied to compacted and fully prepared base, or existing surfacing, according to manufacturer’s specifications. Specified preparation conditions, temperatures, application rates and curing times should be strictly adhered to.

Guidelines for the selection of primer and tack coat are listed in Table 4 on Page 13, and Table 5 on Page 14. Calculation of requirements should be based on the application rates quoted in Table 6 on Page 14, and supplier’s price should be ascertained before quoting.

(c) **Hot-mix asphalt:**

Pricing:

The price of hot mix asphalt should be established with **Much Asphalt** before quoting on any contract. Price is most easily confirmed by photocopying and faxing the attached Asphalt Price/Tender Details form (at the back of this booklet) to the nearest Much Asphalt branch (see distributor list on page 32).

Quantity:

The required tonnage of hot-mix asphalt for a particular job may be calculated using the figures given in Table 2 below. Also shown is the raking (pre-compaction) thicknesses for different thicknesses of finished surfacing.
Table 2: Hot-mix asphalt coverage (spread rate)

<table>
<thead>
<tr>
<th>Comptacted thickness</th>
<th>Pre-compaction thickness</th>
<th>Coverage (m²/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm</td>
<td>25 mm</td>
<td>20</td>
</tr>
<tr>
<td>25 mm</td>
<td>30 mm to 35 mm</td>
<td>16</td>
</tr>
<tr>
<td>30 mm</td>
<td>40 mm</td>
<td>14</td>
</tr>
<tr>
<td>35 mm</td>
<td>40 mm to 50 mm</td>
<td>12</td>
</tr>
<tr>
<td>40 mm</td>
<td>50 mm to 55 mm</td>
<td>10</td>
</tr>
</tbody>
</table>

Note that **asphalt orders** should be tendered by fax on the attached Much Asphalt order form (at the back of this booklet). As with the Asphalt Price /Tender Details form, the Much Asphalt Order form may be folded out and photocopied for repeated use. The notice periods specified on the order form should be adhered to, and orders should specify delivery sequence, batch sizes, temperatures and any other information critical to the success of each job.

If you have any doubts about the products you need to complete a job successfully, consult your supplier
2. **Site Preparation**

2.1 **Establish and mark out work area**

The working area — whether tennis court, driveway, sidewalk, patch or parking area — should be carefully measured and marked out using pegs and line, before any work begins. This pegging out should make allowance for site access, stockpile areas for base material, asphalt and excavated waste material awaiting removal, and also for a site office and equipment store if the contract is large enough to need this.

Contractors should take care to consult the client/owner before using site space outside the designated work area. In residential areas, the contractor may need to acquire permission from the local authority to utilise sidewalk space for plant and materials where this is not available on site.

2.2 **Remove existing vegetation**

Within demarcated working area, remove all existing vegetation including roots. Where trees, shrubs or bushes grow close to but outside the pegged out work site, roots which have penetrated into the work area should be excavated and cut away to prevent lifting of the asphalt surface in the future. Because this activity may damage or destroy plants, consult with the client/owner before proceeding.

2.3 **Excavate subgrade to required depth**

Area to be surfaced should be excavated to the depth dictated by the required thickness of base plus surface material. The depth of excavation should be as consistent as possible to avoid material wastage. Excavation should include the removal of material for concrete footings to accommodate edging, whether this is designated to be concrete or brick.

The excavation of subgrade should establish levels and falls to existing or proposed drainage systems. It is assumed that the contractor is familiar with these processes, so they will not be described in any detail here.
When required excavation depth is achieved, compact, the top of the subgrade thoroughly, mixing in water to obtain optimum moisture content (OMC). The compacted density of the subgrade may need to be laboratory tested to ensure conformity with engineer’s specification.

Figure 1 below, showing a cross section of a typical cambered driveway, gives an indication of a standard construction profile.

![Figure 1: Cambered driveway (cross section)](image)

The thickness of base will vary depending on the loading the finished pavement is required to carry. If the contract involves no engineering design, **Table 3** below gives an indication of minimum compacted thicknesses and base material types for different applications. Where heavy vehicle traffic is anticipated or ground conditions are known to be difficult, consult a specialist pavement engineer.

Table 3: Minimum base thicknesses

<table>
<thead>
<tr>
<th>Application</th>
<th>Base thickness (compacted)</th>
<th>Material type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewalk</td>
<td>75 - 100 mm</td>
<td>G5</td>
</tr>
<tr>
<td>Tennis court</td>
<td>75 - 100 mm</td>
<td>G5</td>
</tr>
<tr>
<td>Parking area</td>
<td>100 - 150 mm</td>
<td>G3 - G4</td>
</tr>
<tr>
<td>Driveway</td>
<td>100 - 150 mm</td>
<td>G3 - G4</td>
</tr>
<tr>
<td>Patches</td>
<td>100-150 mm</td>
<td>G4 or better</td>
</tr>
</tbody>
</table>
3.1 **Marking out and preparation**

Neat and accurately installed edging, whether concrete, brick or other material, is critical to the appearance of the finished contract. The edging may be used to control the levels of the pavement layers. This demands that the edging be accurately measured and marked out before installation.

Whether brick or pre-cast concrete, all edging should be mounted on a suitable concrete footing or foundation. In driveways and parking areas this footing should be a minimum of 75 mm to 100 mm thick to ensure that it can support the weight of any motor vehicle which may inadvertently drive over it.

Once the subgrade has been excavated to the required depth, and levels and falls have been established, excavate further for the footings as indicated in Figure 1.

As with establishing levels and falls, it is assumed that the contractor is familiar with the methods and processes required to achieve a neat, professional edging. These processes will therefore not be described in this guideline, which focuses primarily on the achievement of the best possible hot-mix asphalt surface.

While the strength and durability of an asphalt surface depends on good professional practice, customer satisfaction depends on a finished product which looks good!

A skilled hand finisher ensuring that tight corners and kerb areas are neatly finished
4.1 *Preparation of subgrade*

(a) Compaction:
When the subgrade has been excavated to the required depth, excess material has been disposed of, the required levels and falls have been established, and edging installed, mix water into the subgrade to obtain optimum moisture content (OMC) and compact well. This may require several passes with a roller, vibrator or “pogo” compactor.

The density of the compacted subgrade should conform to engineer’s specifications. If the contract is being executed without engineer’s assistance, the contractor may need to employ a consultant or carry out his own density tests.

> *Note that if optimum compaction of the subgrade is not achieved, the possibility of failure of the completed pavement increases.*

(b) Weed eradication:
The compacted subgrade should be thoroughly sprayed with an approved herbicidal weed-killer to ensure that seeds still in the subgrade do not germinate.

A typical weedkiller, which is applied in very small quantities and is claimed to be safe for surrounding foliage, is Simazine™, supplied by Conchem of Cape Town (021 981 4570). The product is sold as a liquid in 5l cans, and should be diluted at the rate of 500ml to 10l of water. Applied by spray or with a watering can (which is safer than spraying) this quantity will cover 200m².

Rigorous safety precautions, including the use of protective clothing, should be taken to prevent inhalation, skin contact or excessive environmental pollution when using weed killer. Care should be taken to ensure that co-workers do not come into contact with herbicide if spraying takes place in windy conditions.
4.2 Spreading and compaction of base

The contractor should designate dumping sites within the work area at which the supplier must offload base material. These dumpsites should be staggered to minimise material movement from the stockpile to work area.

Material may be moved from stockpile to work area by wheelbarrow or front-end loader, after which it should be raked to the required thickness using rakes or lutes. Various methods are used in the industry to control the thickness of base material before compaction. One of these is illustrated in Figure 2 below. Other methods may include the use of pegs and builder’s line drawn tight at the correct height (pre-compaction depth), or working to pre-marked lines on concrete or brick edgings.

It is most important to allow enough loose thickness to ensure good compaction.

Figure 2: Method to achieve even thickness of uncompacted base

During compaction of the base, care should be taken to achieve an even depth with variation no more than 10 mm over a distance of 3.0 m, measured with a straight-edge. Water should be mixed into the base to achieve OMC. Note that if the base is already too wet it cannot be satisfactorily compacted, and should be allowed to dry out. Compaction by pedestrian or driven roller, vibrator plate or “pogo” compactor should be repeated several times until the layer is at the required compacted thickness. This will ensure that the required base density is achieved. For base thicknesses in excess of 100 mm, the base should be laid in two stages, fully compacting each time.
Where necessary (e.g., a driveway), the base should be shaped to achieve the required camber.

4.3 Final preparation and inspection

Base material includes a proportion of “fines”, i.e. very small particles of gravel which fill the voids between the larger particles.

When roller compaction of the base has been completed, a final compaction run should be made with a vibratory roller or plate vibrator, which will lift a proportion of the fines to the surface.

This surface material should then be broomed off thoroughly to expose the mosaic of larger aggregate particles. Removal of fines and other loose material in this way ensures optimum penetration of the primer into the base. Care should be taken to avoid over-brooming, which can alter or damage the base surface by dislodging aggregate.

It is recommended that immediately before priming the base surface should be sprayed lightly with water to break the surface tension of the base material. Finally, the surface should be rolled with a heavy steel-wheel roller to ensure an even, sound and hard base surface ready for priming.

The surface should be smooth and free of roller track marks.

Checking for levels
5. Primer and tack coats

A primer ensures optimum adhesion between the granular base and a hot mix asphalt surfacing. Most primers are cutback, solvent-based bitumen or bitumen emulsion with sufficient viscosity to penetrate the top 3 mm to - 8 mm of the base. Tack coats, on the other hand, are diluted bitumen emulsions which are lightly applied to old bituminous surfaces to ensure a good bond with the new hot mix asphalt surfacing and to prevent slippage.

Historically, tar products were used as primers, but in South Africa this is no longer allowed because of their carcinogenic properties.

5.1 Selection of tack coat or primer

Tack coat applied to existing bituminous surfaces — such as SS60, also available from Colas — is readily diluted with water and dries more quickly (30 minutes) which makes it easy to handle. Tack coats are applied at a much lighter rate than primers. This is because they are not required to penetrate into the underlying surface. Thus their final application may present a speckled appearance rather than an even black/brown colour.

Hot-mix asphalt will not adhere directly to a granular base without an intervening “bond coat” of bituminous primer or bitumen emulsion. There are distinct bituminous products with differing properties and applications. For granular bases the most widely recommended product is a primer such as the Colas products MC30, MSP1 or Colprime E. However, these take from two to four days to “break” or “set”, a property which can cause problems for contractors working under time pressure.

Table 4: Tack coat

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Application</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS60</td>
<td>Stable grade 60% anionic bitumen emulsion</td>
<td>Slurry, tack coat, stabilisation</td>
<td>Reliable, easy to handle</td>
</tr>
</tbody>
</table>
Table 5: Primers

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Application</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC30</td>
<td>Cutback bitumen primer</td>
<td>Standard primer for road surfacing</td>
<td>Widest possible application. Able to cope with varying granular materials</td>
</tr>
<tr>
<td>MSP1</td>
<td>Inverted bitumen emulsion primer</td>
<td>Primer for road surfacing</td>
<td>Better performance in poor weather.</td>
</tr>
<tr>
<td>Colprime E</td>
<td>Bitumen emulsion primer</td>
<td>Primer for road surfacing</td>
<td>Reduced drying time</td>
</tr>
</tbody>
</table>

5.2 Application rates

Table 6: Tack coat application rates

<table>
<thead>
<tr>
<th>Tack type</th>
<th>Application rate*</th>
<th>Application temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% emulsion</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* At 60°C a 60% emulsion diluted 1:1 with water and applied at 1.0 l/m² will give an application of 0.3 l/m² net binder.

Table 7 gives approximate primer application rates for a range of conditions. To optimise the application rate the following procedure is suggested. Mark out three squares (1 m by 1 m), measure the recommended amount of primer and paint evenly onto the surface of the first square. Decrease the recommended amount of primer by 0.1 l/m² and paint the second square. Increase the recommended amount of primer by 0.1 l/m² and paint the third square. Allow the primer to dry and compare the three squares. The square with an even appearance indicates the correct application rate. (Note: a speckled appearance is too dry, pools of primer indicate it is too wet).
Table 7: Primer application rates

<table>
<thead>
<tr>
<th>Primer Type</th>
<th>Gravel surfaces (ℓ/m²)</th>
<th>Crusher run (ℓ/m²)</th>
<th>Stabilised surfaces (ℓ/m²)</th>
<th>Application temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC30</td>
<td>0.8 - 1.2</td>
<td>0.7</td>
<td>0.6</td>
<td>45-65</td>
</tr>
<tr>
<td>MSP1</td>
<td>0.8 - 1.2</td>
<td>0.7</td>
<td>0.6</td>
<td>ambient - 60</td>
</tr>
<tr>
<td>Colprime E</td>
<td>0.8 - 1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>ambient</td>
</tr>
</tbody>
</table>

Note: Experience has shown that primer does not easily penetrate stabilised materials, especially emulsion treated materials. A tack coat should be used instead.

To accommodate variations in base material, adjustments to the application rate should be made.

Table 7a: Variations to application rates

<table>
<thead>
<tr>
<th>Situation</th>
<th>Application rate (ℓ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse or open base</td>
<td>Recommended rate + 0.1</td>
</tr>
<tr>
<td>Fine or dense base</td>
<td>Recommended rate - 0.1</td>
</tr>
</tbody>
</table>

5.3 Applying primer and tack coats

The use of small drum sprayers with hand lances is not recommended as it is difficult to achieve an even application using this equipment.

Primer should be applied by hand as follows. Measure the area to be primed. Divide the area into rectangles not more than 2m by 2m. Measure out the required volume of primer for each rectangle and pour as evenly as possible over the area. With a stiff bristle broom or squeegee work the primer back and forth over the rectangle until an even appearance is obtained.
Because a tack coat is applied more lightly than primers, instead of "painting" it into the rectangles it should be sprinkled onto the surface using a whitewash brush and a flicking action.

While the base may be slightly damp when primer is applied, this should be measured with care. If rain is imminent, priming should be delayed because the primer will float on the watersurface and will not penetrate the base. Primer should not be applied to base which has a moisture content of more than 50% of (OMC). For example, if the OMC during compaction is 8%, the base should be allowed to dry out to 4% before application of primer.

Curing time for primers depends on prevailing conditions and ambient temperatures, and may vary from 24 to 72 hours. Primer should be allowed to dry thoroughly before applying hot-mix asphalt (it will be matt black in appearance when properly dry).

To ensure a neat and professional finish, all edgings (brick, concrete or other material), gulleys, catchpits and other "furniture" on or near the worksite should be thoroughly protected with plastic sheet to prevent spotting or staining by bituminous products during construction.

Spreading primers
6. **Hot-mix Asphalt**

6.1 Selection

While a wide range of hot-mix asphalt products is available to cater for every requirement in the blacktop industry, smaller contractors producing hot-mix asphalt surfacings without the aid of mechanised paving equipment will usually find that two types of finer grade asphalt will satisfy their needs.

There are many parameters which differentiate high quality hot mix asphalt — which will ensure a strong, durable and good looking surface — from inferior products. These factors include manufacturer’s selection of high grade aggregates and bitumens, rigorous control of temperature, cleanliness and binder content during the asphalt manufacturing process, the installation and maintenance of superior plant and equipment, and good administration from receipt of order through to dispatch of product to the client.

Much Asphalt prides itself on ensuring that clients receive the highest quality product possible, delivered at the right price and at the right time. Allied to best practice application, this ensures that contractors are able to deliver a finished product of a very high standard, at cost-effective rates.

Most application requirements encountered by contractors laying hot-mix asphalt will be more than adequately served by two grades of asphalt, namely either a 9,5 mm continuous medium or a 6,7 mm continuous fine asphalt. For most hand-laid applications where the layer thickness of 30 mm or less, it is suggested that a 6,7 mm fine mix should be used. The fine mix has certain properties that are advantageous for handwork. The asphalt can be hand spread with less segregation than for coarser mixes, and with less effort. The fine mix contains slightly more bitumen, and is easier to compact. The final surface of the asphalt is tightly knitted and more uniform that that of coarser mixes. The 9,5 mm mix should not be used where the layer thickness is less than 25 mm.
6.2 Scheduling and acceptance

Hot-mix asphalt cannot be effectively compacted if its temperature drops below 100 °C. It is therefore essential that this factor be closely and conscientiously monitored throughout the manufacturing, delivery, acceptance and application processes.

The stringent quality controls maintained by Much Asphalt have already been described. These are carried through to the delivery process, and hotmix asphalt is dispatched from Much plants at temperatures in the range 140 °C to 160 °C. Depending on prevailing seasonal and weather conditions, and on the distance from plant to construction site, the temperature of the asphalt will drop by varying amounts. It is thus essential that:

• deliveries be staggered according to production capacity to ensure that material is always at workable temperature;
• the temperature of every delivery is checked when it arrives on site. Any load cooler than 130 °C should be rejected. Every contractor should have, on site, a steel probe-dial gauge thermometer capable of measuring in the range 0 to 240 °C*;
• stockpiles be sited for minimum movement of material, and therefore minimum heat loss, during distribution from stockpile to worksheet;
• if possible, stockpiles be offloaded onto a plastic sheet or thin sheet steel plates to retain temperature and avoid contamination. **Hot-mix asphalt should be covered with tarpaulins at all times except when removing material;**
• hot-mix should be removed from at least two sides of the stockpile, working towards the centre;
• weather conditions should be closely monitored. If rain is imminent, orders may be canceled up to 30 minutes before scheduled dispatch from the Much Asphalt plant.

* These thermometers are available from Metra Clark, Neptune Street, Paarden Eiland (Tel. (021) 511 - 6101) at a cost of about R150, and will be accurately calibrated by Much Asphalt at no cost to customers.
Note: Any load which falls below workable temperature will have to be discarded, at considerable financial loss to the contractor. Once a load of asphalt has been accepted and offloaded, all risk associated with the loss of that load, through temperature loss or any other cause, is the responsibility of the contractor. It is therefore very important that contractors maintain full control of all quality aspects throughout the contract.

6.3 Application of hot-mix asphalt

Good handwork is critical to a successful paving job. Skilled and experienced shovel hands, barrowmen, rake hands and finishers are vital if a high quality of finish is to be efficiently achieved.

It is also important that clothing, tools and equipment remain clean. Tools (shovels, barrows, rakes, trowels, stampers etc) and clothing (shoes, gloves) on site can be kept free of asphalt with a light application of paraffin, but care should be taken that solvents do not drop onto the pavement or other clean surfaces.

(a) Movement from stockpile

- for large pavement areas the use of a rubber-wheeled front-end loader will improve efficiency of distribution from stockpile to working area;
- if wheelbarrows are used, barrowmen should not duplicate as loaders from the stockpile. This is the job of shovelhands, who should work smoothly with the barrowmen to ensure a steady and constant flow of material from the stockpile to the rakehands;
- if distribution stops for any reason, the stockpile should be covered with a tarpaulin to minimise temperature loss.
(b) Raking

This term is in general use throughout the industry, but refers to the operation rather than the tool. Rakes, i.e. those with prongs or metal teeth, have little application in spreading asphalt because the teeth segregate the mix. A flat-edged “lute” is the preferred tool.

A lute uses the reverse (flat side) of a metal rake to spread asphalt to the correct depth, with an even surface, before compaction. Some contractors weld a strip of angle-iron onto the flat of the rake to extend the usable length of the rake “head”. Trial and error will establish a length of extension which achieves optimum distribution efficiency without tiring the rakeman.

Note: A “rule of thumb” is that raking should be kept to the minimum needed to achieve the required thickness and evenness of distribution. Slow or excessive raking may segregate the mix and promote cooling.

- asphalt should be dumped from wheelbarrows as evenly as possible to minimise the work of the rake hand and to disturb the consistency of the mix as little as possible;
- an even thickness of asphalt may be achieved by working to pegs and builder’s line pre-set to the required thickness, or by using wooden planks (or steel reinforcing bars) as described for setting up the thickness (see Figure 2, Page 11);
- experienced rakemen may judge the raking thickness of asphalt accurately by eye, but levels should be checked using a straight edge from time to time.
• the supervisor should monitor the stockpiled asphalt at all times to detect mix which has cooled to **the critical 100 °C cut-off point, below which it can no longer be successfully compacted.** Under no circumstances should asphalt colder than this be used. **Material at temperatures lower than this should be discarded.**

• where the base is shaped, eg. cambered for a driveway, the asphalt spreading and raking operations should start at the low side, and work towards the higher side. This is because hot asphalt tends to spread towards the lower side of the mat under the action of the roller, a movement which become more pronounced if spreading (and therefore rolling) is started on the high side;

• a finisher should hand-spread asphalt into tight corners or around catchpits/gulleys etc where the action of the rake may not be accurate enough. This work should be done at the same time as the rake work, and **not** at the end using cold asphalt.

• Joint to come

(c) Compaction

Compaction should begin immediately after the distribution of hot-mix asphalt has started. The first compaction operation, called “breakdown rolling”, is best achieved with steel wheeled rollers of a minimum 2-tonnes weight. These may be tandem or three-wheeled rollers. Pedestrian rollers are also acceptable for smaller areas.

For optimum compaction and professional finish, the following should be noted:

• steel-wheeled rollers should be free of backlash when switching from forward to reverse;

• roller drum surfaces should not be pitted or worn;

• the driver/operator should be trained and aware of required roller compaction patterns (eg. Figure 3);

• sudden changes in the line of rolling should be avoided and should never be allowed to occur on hot material still in the plastic state;
• changes in the direction of rolling (i.e. forward and reverse) should be made evenly;
• rollers should move at a slow but uniform speed, which should not exceed 5 km/hr for steel wheeled rollers, 8km/hr for pneumatic-tyred rollers, and 4 km/hr for high frequency vibratory rollers.
• rollers, heavy plant and any equipment which may exert point loadings should not be allowed to stand on asphalt which has not yet cooled and set thoroughly;
• rolling should start on the low side of the mat, and progress by half-widths to the highest point (e.g. cambered driveway);
• frequent checks should be made to detect low spots in the rolled mat. Deviation should not exceed 10 mm under a 3,0 m straight-edge;
• to avoid asphalt pick-up, roller wheels should be kept moist with a minimum amount of water: too much water will accelerate cooling and prevent optimum compaction, leading to brittleness, raveling, water ingress and eventual failure of the base, surfacing, or both;
• a rolling pattern which covers the compaction area in the most uniform way is vital. The best way to achieve this is by rolling with half the roller width always on the previously rolled mat, and only half on new mat;

![Figure 3: Half-width rolling pattern](image)

• sufficient passes should be made with the roller (this will depend on roller mass, ambient temperature and other factors) to ensure compaction to required density;
vibratory compaction equipment (intermediate compaction) should not be used until breakdown rolling has been completed and the mat is approaching optimum compaction;

the most uniform surface (eg on parking areas or tennis courts) may be achieved through initial longitudinal passes with the roller, followed by transverse rolling to eliminate surface blemishes;

the initial pass with the roller should, wherever possible, be made with the driven wheel forward, in the direction of compaction. This ensures that the asphalt material is tucked under the wheel by the turning force before it is compacted, as shown in Figure 4 below.

Figure 4: Forces imposed by roller (with acknowledgements to Sabita)

- tight corners and catchpit/gulley surrounds need the skill of an experienced finishing hand, who may apply the hot-mix asphalt using a shovel and roller, and complete the compaction using a stamper or “pogo” compactor;
- the final passes with the roller, termed finish rolling, achieves little compaction, and is carried out primarily to produce a surface free of roller marks and irregularities. Tandem steel-wheeled rollers are ideal for this operation, but a regular rolling pattern is required to achieve full coverage and uniformity of finish.
Hand-laid hot mix asphalt in pictures

Brooming prime over the granular base while premix from covered stockpiles is barrowed to the worksite.

Applying tack by hand with a brush (turning area of a carpark).

Barrowmen tip premix ahead of rakemen. Note close proximity of stockpile.

Rakeman spreads premix. Note the wooden gauge to achieve correct levels.

Handwork: cleaning up the edge with a trowel (left) and hand stamping. Note the neat edge to the concrete.

After initial compaction, a rakeman spreads premix to fill low spots ahead of the second (half-width) roller pass.
Applying primer on base using a stiff broom

Tipping hot mix asphalt, ready for spreading

Using a lute (the flat side of rake) to spread hot mix. Note the levelling bar

Compaction using a steel-wheeled pedestrian roller. Note handwork next to the wall
Testing the temperature of the mix using a digital probe thermometer

Compaction with a pedestrian roller.

Applying primer to a joint before laying hot mix

A pothole prepared for patching. Note the neatly cut edges sloped at an angle to receive new hot mix.
Distress in asphalt pavements is a worldwide problem, and is caused by heavy traffic loading, ingress of water and the wear and tear associated with ageing. Although this distress may take many forms, it is usually manifested in the initial stages as cracking — which itself may take as many as nine different forms. Unless repaired at an early stage cracking, of whatever kind, will allow rainwater to penetrate to the base layer, and perhaps even further into the layerworks, resulting in failure of the base, and the accelerated breakdown of the asphaltsurfacing.

For the purposes of this Best Practice Guide, the process of patching and repair will be restricted to crocodile cracks, which can be repaired using hot-mix asphalt after removal of degraded or damaged surfacing material, random cracks, potholes and pavement failures. The repair of these cracks is different from that applied to active cracks, many of which may be sealed using a variety of sealants and procedures.

7.1 Crocodile cracks

These cracks appear in a polygon pattern resembling the skin of a crocodile. The average diameter of the polygons is generally less than 300 mm, and they can occur directly as a result of fatigue in the surface due to the action of traffic. (Ref. Sabita Manual 20: Sealing of active cracks in road pavements).

7.2 Random cracks

These cracks occur as single isolated cracks, usually in old asphalt surfaces. The cracks can be open and several millimetres wide. The surrounding road surface shows no signs of distress or water ingress.
7.3 **Potholes**

Potholes, normally less than 500 mm in diameter, usually occur at isolated places on the road surface, possibly where it has been damaged or there is a weakness. The surrounding pavement appears sound and there are no other signs of distress. Following failure of the surfacing and exposure of the base, the upper part of the base is worn away by traffic (accelerated by wet conditions) to form a hole. Apart from being dangerous for traffic, the exposed layerworks of the road quickly absorb rainwater, accelerating the total breakdown of the road surface. The patching of potholes and surface cracks should be considered a high priority.

7.4 **Pavement failure**

Pavement failure usually occurs in the vehicle wheel tracks and is caused by the action of vehicles, cracking and the ingress of water. Typical signs of pavement failure are crocodile cracks, pumping of loose fines onto the surface, rutting, and finally displacement causing a wave-like form in the road surface (often evidenced by a wiggle in the yellow shoulder line). This type of distress is caused by problems in the underlying pavement layers, usually in the base. Once the surfacing breaks up in this manner it becomes a danger to traffic.
7.5 **Surface repairs**

7.5.1 **Crocodile cracking**

Where the crocodile cracking is limited in extent and there are no other signs of distress, the cracking can be sealed with a geotextile such as Kaymat. This is a short term measure and should be protected by a grit armouring layer, reseal or overlay.

Alternatively the cracked surfaceing can be removed and, provided the base is sound, replaced with hot mix asphalt (see surfacing in 7.7: Patching.)

7.5.2 **Random cracks**

While these cracks have existed for a long period of time and do not appear to be affecting the pavement, before carrying out a reseal or overlay it is recommended that they should be treated as follows: Clean out the crack using compressed air, prime it with diluted Viaseal and seal using a soft cold sealant such as Colflex C or Colseal.

7.6 **Pothole repairs**

Mark out a neat shape (preferably rectangular) as closely as possible around the pothole. Using the broad end of a pick chip out the surfacing to form a neat edge. Clean out the hole removing any loose base material until the compacted base is exposed. It is not necessary to remove sound compacted base. Prime the exposed base and sides of the hole by painting on emulsion. Do not overapply primer to the base of the hole, and remove or "blot up" pools of primer.

Fill the hole with fine hot mix asphalt. If the pothole is deeper than 50 mm, fill the hole in two layers. Level off the loose asphalt to a height of one-third the thickness of the compacted top layer above the surrounding road surface. Compact each layer well and continue compaction of the top layer until the repair is flat and level with the old surface.
Cold asphalt may be used but study carefully the comments and recommendations for surfacing in section 7.7.

Note: When patching potholes on public roads, set out and retrieve traffic control signs and warning cones according to nationally accepted road signs manuals.

7.7 Pavement failure repairs (patching)

(a) Preparation

Carry out the following:

- mark a square or rectangular shape using chalk around the edges of the failure;
- make sure that the edges of the patch are in sound material (check for rutting);
- excavate to the bottom of the base layer using either picks or a pavement breaker;
- cut neatly along the marked chalk lines, trimming the sides to an angle of 60° to the horizontal;
- remove all loose material and stockpile excavated material in separate piles for each layer; and
- if suitable, stockpiled material may be used in the lower layers (not for the base).

If there is free water or even excessive dampness, drain and allow to dry. If there is a water problem backfill the hole with granular material as a temporary measure and call for expert help. Inspect the subbase and check if it is sound and compact. If this is not the case excavate this layer as well. Check the underlying material. Replace the subbase with compacted gravel material (the old base may be suitable).
(b) Gravel base

Where the patch can be left open for more than a day, replace the base using approved base material (crusher run, mixed with 1% cement, and 2% diluted stable-grade bitumen emulsion). Add water as required to bring mixture to optimum moisture content. Finally backfill the base in equal layers not thicker than 100 mm (loose) each, and compact to achieve a uniformly hard surface. Compact the top layer to 30 mm below the existing surface.

(c) Asphalt base

Where the patch has to be completed on the same day, sweep the surface of the subbase and prime the sides and floor of the patch. Do not leave pools of primer on the floor of the patch. Replace the layers with hot mix asphalt. Where convenient the base asphalt may be of the same fine mix used for the surfacing. Compact the asphalt in equal layers not thicker than 60 mm (loose). Compact the top of the base to 30 mm below the existing road surface using procedures described in 6.3c.

(d) Priming

Where the patch has been backfilled with gravel base, the edges of the patch and the surface of the base, should be swept clear of any loose gravel or other material, and then thoroughly primed as detailed on Page 13.

(e) Surfacing

The procedures for selecting, ordering, handling and applying hot-mix asphalt are described on Page 36 of this guide, and should be followed during the patching process described below.

- place hot-mix asphalt in the hole and use an inverted rake or lute to screed the material to about 10 mm above the existing surface (see pages 20 and 21);
- use a straight edge to check that the loose asphalt follows crossfall or camber of the existing surface;
- compact the new asphalt, ensuring that the joint between old and new asphalt is neat and clean (see page 21);
• after compaction check with a straight edge that there are no bumps or slacks in the completed patch. If there are slacks add more asphalt and compact; if there are bumps, continue compacting until the patch is level;
• when the patch conforms to the existing pavement surface in all directions, it may be sealed around the edges using a suitable seal treatment;
• if the supervisor is satisfied that the repaired area/s comply with required quality standards, all loose material, tools and other equipment should be removed and the site thoroughly cleaned as detailed on page 34.

When hot mix asphalt is not available or quantities are so small that it is not practical to use hot mix, a cold mix may be used. However, cold mixes require a careful balance between binder content and cutter (to keep it soft when cold) and are prone to failure for two reasons. Typically the cold mix is:

• either too stiff and difficult to compact. It will thus be stable under traffic but will be open and permeable. As a result during the rainy season it will wet up and fail;
• or it is soft and compactible. The mix will then deform under early traffic and later during hot weather it shoves under traffic.

Of the two conditions the stiff mix is preferred as it gives a stable surface. However, the high permeability needs to be dealt with by one or more treatments of Viaseal diluted 1:1 with water, until the surface (and mix) becomes impermeable.

(f) Small quantities of hot mix

Where hot mix is available and only small quantities are required there is a problem in keeping the mix hot for several hours. The following points should be considered to improve the situation.

1. Speak to your Much contact about ordering as small quantities as possible – eg a bakkie load.
2. Consider protecting the load against heat loss. Innovative contractors have devised a number of ways to do this, for example:
• Where possible prepare a number of patches sufficient to use up the smallest load;
• When surfacing have more than one surfacing team;
• Have special double skinned tarpaulins filled with a proprietary insulation material to protect the load in the vehicle and in stockpile;
• Construct a number of small insulated ‘hot boxes’ with floating lids.
8.1 Final inspection

(a) Asphalt surface
The completed asphalt surface should be carefully inspected for rough or low spots, surface irregularities, untidy edges, incomplete compaction or other faults. These should all be corrected before the contractor may declare himself satisfied with the job, and ready to hand over to the client.

(b) Loose and excess material
All loose or excess asphalt, base material, excavated subgrade and other waste material should be removed from site, together with plastic or metal sheeting and other construction aids.

(c) Tools
All tools should be thoroughly cleaned in solvent such as diesel or paraffin at the conclusion of each day’s work, and at the conclusion of the contract. This is best done by placing a wheelbarrow containing solvent on the thin steel or plastic sheet laid to receive hot-mix asphalt deliveries. A “barrier” of dry sand, 200 mm wide and 50 mm thick should be spread around the wheel to catch solvent which spills out of the wheelbarrow during the cleaning operation. All cleaning materials should be removed from the site at the conclusion of the contract.

Solvents are chemicals which can damage soil or water resources, and may be detrimental to the environment. All such materials should be carefully controlled during use, and should be removed from site and dumped only at approved sites.
9. Ordering Hot-Mix Asphalt

9.1 Much Asphalt Branches

<table>
<thead>
<tr>
<th>Branch</th>
<th>Branch Manager</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benoni</td>
<td>Brian Neville</td>
<td>(011) 423 1004</td>
<td>(011) 423 2000</td>
</tr>
<tr>
<td>Bloemfontein</td>
<td>Chesney Glossop</td>
<td>(051) 433 2741</td>
<td>(051) 433 3036</td>
</tr>
<tr>
<td>Coedmore</td>
<td>Kobus Lubbe</td>
<td>087 997 1102</td>
<td>(031) 456 2066</td>
</tr>
<tr>
<td>Contermanskloof</td>
<td>Brendon Masters</td>
<td>087 997 1104</td>
<td>(021) 557 1196</td>
</tr>
<tr>
<td>East London</td>
<td>Francois Meyerhoff</td>
<td>(043) 745 2016</td>
<td>(043) 745 0609</td>
</tr>
<tr>
<td>Eerste Rivier</td>
<td>Shane Smith</td>
<td>(021) 900 4433</td>
<td>(021) 900 4448</td>
</tr>
<tr>
<td>Eikenhof</td>
<td>Willem Erasmus</td>
<td>087 997 1108</td>
<td>27 11 941 1216</td>
</tr>
<tr>
<td>Empangeni</td>
<td>Kalay Govender</td>
<td>087 997 1111</td>
<td>27 35 792 8444</td>
</tr>
<tr>
<td>George</td>
<td>Mesuli Sopete</td>
<td>087 997 1112</td>
<td>(044) 870 8004</td>
</tr>
<tr>
<td>Pomona</td>
<td>Riaan Odendaal</td>
<td>087 997 1103</td>
<td>(011) 979 0616</td>
</tr>
<tr>
<td>Pietermaritzburg</td>
<td>Jacques Muller</td>
<td>087 997 1105</td>
<td>086 637 9937</td>
</tr>
<tr>
<td>Polokwane</td>
<td>William Nenjerama</td>
<td>087 997 1109</td>
<td></td>
</tr>
<tr>
<td>Port Elizabeth</td>
<td>Nathan Jacobs</td>
<td>(041) 364 1116</td>
<td>(041) 364 1584</td>
</tr>
<tr>
<td>Roodepoort</td>
<td>Greg Van Wyk</td>
<td>087 997 1107</td>
<td>(011) 472 7640</td>
</tr>
<tr>
<td>Witbank</td>
<td>Zime Ndelu</td>
<td>087 997 1113</td>
<td>(013) 699 9794</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Regional Manager</th>
<th>Telephone Number</th>
<th>Fax Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauteng</td>
<td>Werner Kruger</td>
<td>(011) 423 1004</td>
<td>082 825 3663</td>
</tr>
<tr>
<td>KwaZulu-Natal</td>
<td>Timothy Gradwell</td>
<td>(031) 450 0400</td>
<td>082 554 5879</td>
</tr>
<tr>
<td>Western Cape</td>
<td>Colin Brooks</td>
<td>(021) 900 4455</td>
<td>083 654 9785</td>
</tr>
<tr>
<td>Free State, Limpopo, Mpumalanga</td>
<td>Thandi Mokgalagadi</td>
<td>(011) 423 1004</td>
<td>082 823 5179</td>
</tr>
</tbody>
</table>
9.2 Procedure for ordering hot-mix asphalt:

(a) Pricing
The price of hot-mix asphalt may vary from time to time under the influence of a range of economic factors, including delivery distance. Contractors are therefore advised to ensure that they have a formal Much Asphalt quote before tendering for contracts. Prevailing prices for the required product, delivered or collected, may be obtained by faxing the attached ASPHALT PRICE/TENDER DETAILS form to your nearest Much Asphalt branch. For repeated use the form may be folded out and photocopied before being completed and faxed.

(b) Ordering
The attached order form may be folded out, photocopied, and faxed to the relevant Much Asphalt branch (see contact list above). To avoid disruption of construction schedules, clients should please note the following notice periods for placing, or for canceling, orders:

<table>
<thead>
<tr>
<th>Quantity ordered</th>
<th>Minimum notice period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumes in excess of 150 tonnes</td>
<td>One week notice period</td>
</tr>
<tr>
<td>Volumes less than 150 tonnes</td>
<td>Order at least three days before required</td>
</tr>
</tbody>
</table>

(c) Payment:

Much Asphalt products may be purchased for cash, or under a credit arrangement provided formal credit facilities have been negotiated. Method of payment should be clearly indicated on all order forms, with account details if credit has been arranged.

Orders for hot mix asphalt may be canceled up to 30 minutes before scheduled dispatch from Much Asphalt plants